Lang, Origami and Geometric Constructions Origami and Geometric Constructions 1 Bringing a Point to a Point Bringing a Point onto a Line ( Bringing One Line to Another Line ( Lang, Origami and Geometric Constructions Introduction
نویسنده
چکیده
By Robert J. Lang Copyright ©1996–2010. All rights reserved. Introduction................................................................................................................................... 3 Preliminaries and Definitions ...................................................................................................... 3 Binary Divisions ............................................................................................................................ 5 Binary Folding Algorithm........................................................................................................ 6 Binary Approximations.......................................................................................................... 10 Rational Fractions....................................................................................................................... 13 Crossing Diagonals ................................................................................................................. 13 Fujimoto’s Construction ........................................................................................................ 17 Noma’s Method ....................................................................................................................... 19 Haga’s Construction ............................................................................................................... 21 Irrational Proportions ................................................................................................................ 24 Continued Fractions ............................................................................................................... 24 Quadratic Surds...................................................................................................................... 28 Angle Divisions........................................................................................................................ 34 Axiomatic Origami...................................................................................................................... 40 Preliminaries ........................................................................................................................... 43 Folding ..................................................................................................................................... 45 Alignments............................................................................................................................... 46 Bringing a point to a point P↔ P .................................................................................... 46 Bringing a point onto a line ( P↔ L ) ................................................................................ 46 Bringing one line to another line ( L↔ L ) ........................................................................ 46
منابع مشابه
Lang, Origami and Geometric Constructions Origami and Geometric Constructions 1 Lang, Origami and Geometric Constructions Introduction
By Robert J. Lang Copyright ©1996–2015. All rights reserved. Introduction ................................................................................................................................... 3 Preliminaries and Definitions ...................................................................................................... 3 Binary Divisions ........................................
متن کاملA Mathematical Theory of Origami Constructions and Numbers
About twelve years ago, I learned that paper folding or elementary origami could be used to demonstrate all the Euclidean constructions; the booklet, [9], gives postulates and detailed the methods for high school teachers. Since then, I have noticed a number of papers on origami and variations, [3], [2] and even websites [7]. What are a good set of axioms and what should be constructible all ca...
متن کاملOne-, Two-, and Multi-Fold Origami Axioms
In 1989 [15], Huzita introduced the six origami operations that have now become know as the Huzita Axioms (HAs). The HAs, shown in Figure 1, constitute six distinct ways of defining a single fold by bringing together combinations of preexisting points (e.g., crease intersections) and preexisting lines (creases and/or the fold line itself). It has been shown that all of the standard compass-and-...
متن کاملDesign of three-dimensional origami structures based on a vertex approach
Origami geometric design is fundamental to many engineering applications of origami structures. This paper presents a new method for the design of three-dimensional (3D) origami structures suitable for engineering use. Using input point sets specified, respectively, in the x−z and y−z planes of a Cartesian coordinate system, the proposed method generates the coordinates of the vertices of a fol...
متن کامل